Thursday, October 21, 2010

Bamboo

Bamboo About this sound listen (help·info) is a group of perennial evergreens in the true grass family Poaceae, subfamily Bambusoideae, tribe Bambuseae. Giant bamboos are the largest members of the grass family.

In bamboo, the internodal regions of the stem are hollow and the vascular bundles in the cross section are scattered throughout the stem instead of in a cylindrical arrangement. The dicotyledonous woody xylem is also absent. The absence of secondary growth wood causes the stems of monocots, even of palms and large bamboos, to be columnar rather than tapering.[1]

Bamboos are some of the fastest growing plants in the world.[2] They are capable of growing 60 cm (24 in.) or more per day due to a unique rhizome-dependent system. However, the growth rate is dependent on local soil and climatic conditions.

Bamboos are of notable economic and cultural significance in East Asia and South East Asia, being used for building materials, as a food source, and as a versatile raw product.

Genus and geography

There are more than 70 genera divided into about 1,450 species.[3] Bamboo are found in diverse climates, from cold mountains to hot tropical regions. They occur across East Asia, from 50°N latitude in Sakhalin[citation needed] through to Northern Australia, and west to India and the Himalayas.[4] They also occur in sub-Saharan Africa, and in the Americas from the Mid-Atlantic United States[5] south to Argentina and Chile, reaching their southernmost point anywhere, at 47°S latitude. Continental Europe is not known to have any native species of bamboo.[6]

There have recently been some attempts to grow bamboo on a commercial basis in the Great Lakes region of eastern-central Africa, especially in Rwanda.[7][8]

Ecology
Growth
Bamboo plants growing in the Philippines

Bamboo is one of the fastest-growing plants on Earth; it has been measured surging skyward as fast as 100 cm (39 in) in a 24-hour period,[2] and can also reach maximal growth rate exceeding one metre (39 inches) per hour for short periods of time. Many prehistoric bamboos exceeded heights of 85 metres (279 ft)[citation needed]. Primarily growing in regions of warmer climates during the Cretaceous period, vast fields existed in what is now Asia.

Unlike trees, all bamboo have the potential to grow to full height and girth in a single growing season of 3–4 months. During this first season, the clump of young shoots grow vertically, with no branching. In the next year, the pulpy wall of each culm or stem slowly dries and hardens. The culm begins to sprout branches and leaves from each node. During the third year, the culm further hardens. The shoot is now considered a fully mature culm. Over the next 2–5 years (depending on species), fungus and mould begin to form on the outside of the culm, which eventually penetrate and overcome the culm. Around 5 – 8 years later (species and climate dependent), the fungal and mold growth cause the culm to collapse and decay. This brief life means culms are ready for harvest and suitable for use in construction within 3 – 7 years.

Mass flowering

Although some bamboos flower every year, most species flower infrequently. In fact, many bamboos only flower at intervals as long as 60 or 120 years. These taxa exhibit mass flowering (or gregarious flowering), with all plants in the population flowering simultaneously. The longest mass flowering interval known is 130 years, and is found for all the species Phyllostachys bambusoides (Sieb. & Zucc.). In this species, all plants of the same stock flower at the same time, regardless of differences in geographic locations or climatic conditions, then the bamboo dies. The lack of environmental impact on the time of flowering indicates the presence of some sort of “alarm clock” in each cell of the plant which signals the diversion of all energy to flower production and the cessation of vegetative growth.[9] This mechanism, as well as the evolutionary cause behind it, is still largely a mystery.

One theory to explain the evolution of this semelparous mass flowering is the predator satiation hypothesis. This theory argues that by fruiting at the same time, a population increases the survival rate of their seeds by flooding the area with fruit so that even if predators eat their fill, there will still be seeds left over. By having a flowering cycle longer than the lifespan of the rodent predators, bamboos can regulate animal populations by causing starvation during the period between flowering events. Thus, according to this hypothesis, the death of the adult clone is due to resource exhaustion, as it would be more effective for parent plants to devote all resources to creating a large seed crop than to hold back energy for their own regeneration.[10]

A second theory, the fire cycle hypothesis, argues that periodic flowering followed by death of the adult plants has evolved as a mechanism to create disturbance in the habitat, thus providing the seedlings with a gap in which to grow. This hypothesis argues that the dead culms create a large fuel load, and also a large target for lightning strikes, increasing the likelihood of wildfire.[11] Because bamboos are very aggressive as early successional plants, the seedlings would be able to outstrip other plants and take over the space left by their parents.

However, both have been disputed for different reasons. The predator satiation theory does not explain why the flowering cycle is 10 times longer than the lifespan of the local rodents, something not predicted by the theory. The bamboo fire cycle theory is considered by a few scientists to be unreasonable; they argue[12] that fires only result from humans and there is no natural fire in India. This notion is considered wrong based on distribution of lightning strike data during the dry season throughout India. However, another argument against this theory is the lack of precedent for any living organism to harness something as unpredictable as lightning strikes to increase its chance of survival as part of natural evolutionary progress.[13]

The mass fruiting also has direct economic and ecological consequences, however. The huge increase in available fruit in the forests often causes a boom in rodent populations, leading to increases in disease and famine in nearby human populations. For example, there are devastating consequences when the Melocanna bambusoides population flowers and fruits once every 30–35 years[1] around the Bay of Bengal. The death of the bamboo plants following their fruiting means the local people lose their building material, and the large increase in bamboo fruit leads to a rapid increase in rodent populations. As the number of rodents increase, they consume all available food, including grain fields and stored food, sometimes leading to famine. These rats can also carry dangerous diseases such as typhus, typhoid, and bubonic plague, which can reach epidemic proportions as the rodents increase in number.

Bamboo in animal diets
Bamboo is the main food of the Giant Panda; it makes up 99% of the Panda's diet.

Soft bamboo shoots, stems, and leaves are the major food source of the Giant Panda of China and the Red Panda of Nepal. Rats will eat the fruits as described above. Mountain Gorillas of Africa also feed on bamboo and have been documented consuming bamboo sap which was fermented and alcoholic;[14] chimps and elephants of the region also eat the stalks.

Commercial timber

Timber is harvested from cultivated and wild stands and some of the larger bamboos, particularly species in the genus Phyllostachys, are known as "timber bamboos".
[edit] Harvesting

Bamboo used for construction purposes must be harvested when the culms reach their greatest strength and when sugar levels in the sap are at their lowest, as high sugar content increases the ease and rate of pest infestation.

Harvesting of bamboo is typically undertaken according to the following cycles.

1) Life cycle of the clump: As each individual culm goes through a 5-7 year life cycle, culms are ideally allowed to reach this level of maturity prior to full capacity harvesting. The clearing out or thinning of culms, particularly older decaying culms, helps to ensure adequate light and resources for new growth. Well maintained clumps may have a productivity 3-4 times that of an unharvested wild clump.

2) Life cycle of the culm: As per the life cycle described above, bamboo is harvested from 2–3 years through to 5–7 years, depending on the species.

3) Annual cycle: As all growth of new bamboo occurs during the wet season, disturbing the clump during this phase will potentially damage the upcoming crop. Also during this high rain fall period, sap levels are at their highest and then diminish towards the dry season. Picking immediately prior to the wet/growth season may also damage new shoots. Hence harvesting is best at the end of the dry season, a few months prior to the start of the wet.

4) Daily cycle: During the height of the day, Photosynthesis is at its peak producing the highest levels of sugar in sap, making this the least ideal time of day to harvest. Many traditional practitioners believe that the best time to harvest is at dawn or dusk on a full moon. This practice makes sense in terms of both moon cycles, visibility and daily cycles.
[edit] Leaching

Leaching is the removal of sap post-harvest. In many areas of the world the sap levels in harvested bamboo are reduced either through leaching or post-harvest photosynthesis. Examples of this practice include:

1. Cut bamboo is raised clear of the ground and leant against the rest of the clump for 1–2 weeks until leaves turn yellow to allow full consumption of sugars by the plant
2. A similar method is undertaken but with the base of the culm standing in fresh water, either in a large drum or stream to leach out sap
3. Cut culms are immersed in a running stream and weighted down for 3–4 weeks
4. Water is pumped through the freshly cut culms forcing out the sap (this method is often used in conjunction with the injection of some form of treatment)

In the process of water leaching, the bamboo is dried slowly and evenly in the shade to avoid cracking in the outer skin of the bamboo, thereby reducing opportunities for pest infestation.

Durability of bamboo in construction is directly related to how well it is handled from the moment of planting through harvesting, transportation, storage, design, construction and maintenance. Bamboo harvested at the correct time of year and then exposed to ground contact or rain, will break down just as quickly as incorrectly harvested material.

Ornamental bamboos


There are two general patterns for the growth of bamboo: "clumping" (sympodial) and "running" (monopodial). Clumping bamboo species tend to spread slowly, as the growth pattern of the rhizomes is to simply expand the root mass gradually, similar to ornamental grasses. "Running" bamboos, on the other hand, need to be taken care of in cultivation because of their potential for aggressive behavior. They spread mainly through their roots and/or rhizomes, which can spread widely underground and send up new culms to break through the surface. Running bamboo species are highly variable in their tendency to spread; this is related to both the species and the soil and climate conditions. Some can send out runners of several metres a year, while others can stay in the same general area for long periods. If neglected, over time they can cause problems by moving into adjacent areas.
Bamboo foliage with black stems (probably Phyllostachys nigra)

Bamboos seldom and unpredictably flower, and the frequency of flowering varies greatly from species to species. Once flowering takes place, a plant will decline and often die entirely. Although there are always a few species of bamboo in flower at any given time, collectors desiring to grow specific bamboo typically obtain their plants as divisions of already-growing plants, rather than waiting for seeds to be produced.

Regular maintenance will indicate major growth directions and locations. Once the rhizomes are cut, they are typically removed; however, rhizomes take a number of months to mature and an immature, severed rhizome will usually cease growing if left in-ground. If any bamboo shoots come up outside of the bamboo area afterwards, their presence indicates the precise location of the missed rhizome. The fibrous roots that radiate from the rhizomes do not produce more bamboo if they stay in the ground.

Bamboo growth can also be controlled by surrounding the plant or grove with a physical barrier. Typically, concrete and specially-rolled HDPE plastic are the materials used to create the barrier, which is placed in a 60–90 cm (2.0–3.0 ft) deep ditch around the planting, and angled out at the top to direct the rhizomes to the surface. (This is only possible if the barrier is installed in a straight line.) This method is very detrimental to ornamental bamboo as the bamboo within quickly becomes rootbound—showing all the signs of any unhealthy containerized plant. Symptoms include rhizomes escaping over the top, down underneath, and bursting the barrier. The bamboo within generally deteriorates in quality as fewer and fewer culms grow each year, culms live shorter periods, new culm diameter decreases, fewer leaves grow on the culms, and leaves turn yellow as the unnaturally contained rootmass quickly depletes the soil of nutrients, and curling leaves as the condensed roots cannot collect the water they need to sustain the foliage. Strong rhizomes and tools can penetrate plastic barriers with relative ease, so great care must be taken. Barriers usually fail sooner or later, or the bamboo within suffers greatly. Casual observation of many failed barriers has shown bursting of 60-mil (1.5 mm) HDPE in 5–6 years, and rhizomes diving underneath in as few as 3 years post install. In small areas regular maintenance is the only perfect method of controlling the spreading bamboos. Bamboo contained by barriers is much more difficult to remove than free-spreading bamboo. Barriers and edging are unnecessary for clump-forming bamboos. Clump-forming bamboos may eventually need to have portions removed if they become too large.

The ornamental plant sold in containers and marketed as "lucky bamboo" is actually an entirely unrelated plant, Dracaena sanderiana. It is a resilient member of the lily family that grows in the dark, tropical rainforests of Southeast Asia and Africa. Lucky Bamboo has long been associated with the Eastern practice of Feng Shui. On a similar note, Japanese knotweed is also sometimes mistaken for a bamboo but it grows wild and is considered an invasive species.

Culinary

The shoots (new bamboo culms that come out of the ground) of bamboo are edible. They are used in numerous Asian dishes and broths, and are available in supermarkets in various sliced forms, both fresh and canned version. The shoots of the giant bamboo contain cyanide. Despite this, the Golden Bamboo Lemur ingests many times the quantity of toxin that would kill a human.

The bamboo shoot in its fermented state forms an important ingredient in cuisines across the Himalayas. In Assam, for example, it is called khorisa. In Nepal, a delicacy popular across ethnic boundaries consists of bamboo shoots fermented with turmeric and oil, and cooked with potatoes into a dish that usually accompanies rice (alu tama in Nepali).

In Indonesia, they are sliced thin and then boiled with santan (thick coconut milk) and spices to make a dish called gulai rebung. Other recipes using bamboo shoots are sayur lodeh (mixed vegetables in coconut milk) and lun pia (sometimes written lumpia: fried wrapped bamboo shoots with vegetables). The shoots of some species contain toxins that need to be leached or boiled out before they can be eaten safely.

Pickled bamboo, used as a condiment, may also be made from the pith of the young shoots.

The sap of young stalks tapped during the rainy season may be fermented to make ulanzi (a sweet wine) or simply made into a soft drink. Bamboo leaves are also used as wrappers for steamed dumplings which usually contains glutinous rice and other ingredients.
Edible bamboo shoots in a Japanese market

In Sambalpur, India, the tender shoots are grated into juliennes and fermented to prepare kardi. The name is derived from the Sanskrit word for bamboo shoot, "karira". This fermented bamboo shoot is used in various culinary preparations, notably "amil", a sour vegetable soup. It is also made into pancakes using rice flour as a binding agent. The shoots that have turned a little fibrous are fermented, dried, and ground to sand sized particles to prepare a garnish known as "hendua". It is also cooked with tender pumpkin leaves to make sag green leaves.

The empty hollow in the stalks of larger bamboo is often used to cook food in many Asian cultures. Soups are boiled and rice is cooked in the hollows of fresh stalks of bamboo directly over a flame. Similarly, steamed tea is sometimes rammed into bamboo hollows to produce compressed forms of Pu-erh tea. Cooking food in bamboo is said to give the food a subtle but distinctive taste.

In addition, bamboo is frequently used for cooking utensils within many cultures and used in the manufacture of chopsticks. In modern times, some see bamboo tools as an eco-friendly alternative to other manufactured utensils.

Medicine

Bamboo is used in Chinese medicine for treating infections and healing.

It is a low-calorie source of potassium. It is known for its sweet taste and as a good source of nutrients and protein.

In Ayurveda, the Indian system of traditional medicine, the silicious concretion found in the culms of the bamboo stem is called banslochan. It is known as tabashir or tawashir in Unani-Tibb the Indo-Persian system of medicine. In English it is called "bamboo manna". This concretion is said to be a tonic for the respiratory diseases. It was earlier obtained from Melocanna bambusoides and is very hard to get; it has been largely replaced by synthetic silicic acid. In most Indian literature, Bambusa arundinacea is described as the source of bamboo manna

Construction
Bamboo scaffolding can reach great heights.
house from Bambou Habitat
House made entirely of bamboo

In its natural form, bamboo as a construction material is traditionally associated with the cultures of East Asia and the South Pacific, to some extent in Central and South America and by extension in the aesthetic of Tiki culture. In China, bamboo was used to hold up simple suspension bridges, either by making cables of split bamboo or twisting whole culms of sufficiently pliable bamboo together. One such bridge in the area of Qian-Xian is referenced in writings dating back 960 A.D. and may have stood since as far back as the 3rd century B.C., due largely to continuous maintenance.[16] It has long been used as scaffolding; the practice has been banned in China for buildings over six storeys but is still in continuous use for skyscrapers in Hong Kong.[17] In the Philippines, the Nipa Hut is a fairly typical example of the most basic sort of housing that bamboo is used for; the walls are split and woven bamboo and bamboo slats and poles may be used as its support. In Japanese architecture, bamboo is used primarily as a supplemental and/or decorative element in buildings such as fencing, fountains, grates and gutters, largely due to the ready abundance of quality timber.[18]

Various structural shapes may be made by training the bamboo to assume them as it grows. Squared sections of bamboo are created by compressing the growing stalk within a square form.[19] Arches may similarly be created by forcing the bamboo's growth with the desired form and costs many times less than it would to assume the same shape in regular wood timber. More traditional forming methods such as the application of heat and pressure may also be used to curve or flatten the cut stalks.[20]

Bamboo can be cut and laminated into sheets and planks. This process involves cutting stalks into thin strips, planing them flat, boiling and drying the strips which are then glued, pressed and finished.[21] Generally long used in China and Japan, entrepreneurs started developing and selling laminated bamboo flooring in the West during the mid 1990s;[21] products made from bamboo laminate including flooring, cabinetry, furniture and even decorative use are currently surging in popularity, transitioning from the boutique market to mainstream providers such as Home Depot. The bamboo goods industry (which also includes small goods, fabric, etc.) is expected to be worth $25 billion by the year 2012.[22] The quality of bamboo laminate varies between manufacturers and the maturity of the plant from which it was harvested (6 years being considered the optimum); the sturdiest products fulfill their claims of being up to three times harder than oak hardwood but others may be softer than standard hardwood.[21]

Bamboo intended for use in construction should be treated to resist insects and rot. The most common solution for this purpose is a mixture of borax and boric acid.[23] Another process involves boiling cut bamboo in order to remove the starches that attract bugs.[21]
Bamboo pavilion in the Shenzhen Biennale.

Bamboo has been used as reinforcement for concrete in those areas where it is plentiful, though dispute exists over its effectiveness in the various studies done on the subject. Bamboo does have the necessary strength to fulfil this function, but untreated bamboo will swell from the absorption of water from the concrete, causing it to crack. Several procedures must be followed to overcome this shortcoming.[24]

Several institutes, businesses, and universities are working on the bamboo as an ecological construction material. In the United States and France, it is possible to get houses made entirely of bamboo, which are earthquake and cyclone-resistant and internationally certified. In Bali Indonesia there is an International primary school, named the Green School, which is constructed entirely of bamboo, due to its beauty, and advantages as a sustainable resource. There are three ISO standards for bamboo as a construction material.

In parts of India, bamboo is used (- apart from common uses like making ladders, which in addition to all other uses for ladders are also used for carrying bodies in funerals -) for drying clothes indoors, both as the rod high up near the ceiling to hang clothes on as well as the stick that is wielded with acquired expert skill to hoist, spread, and to take down the clothes when dry. In Maharashtra the bamboo groves and forests are called VeLuvana, the name VeLu for Bamboo most likely from Sanskrit, while Vana is forest.

Furthermore, bamboo is also used to create flagpoles for saffron coloured, Hindu religious flags, which can be seen fluttering across India, especially Bihar and Uttar Pradesh, as well as in Guyana and Suriname.


Textiles

There are two methods by which bamboo may be processed into fiber for fabric, both developed in China. The first is a mechanical process similar to that used to process flax or hemp; the stalks are crushed and natural enzymes break them down further, allowing fibers to be combed out.[25] The other follows the process by which rayon is made where the fibers are broken down with chemicals and extruded through mechanical spinnerets; the chemicals include lye, carbon disulfide and strong acids.[21] Retailers have sold both end products as "bamboo fabric" to cash in on bamboo's current eco-friendly cachet, however the Canadian Competition Bureau[26] and the US Federal Trade Commission[27], as of mid-2009, are cracking down on the practice of labeling bamboo rayon as natural bamboo fabric. Under the guidelines of both agencies these products must be labeled as rayon with the optional qualifier "from bamboo". Bamboo fabric is known for its softness and boasts strong absorbency and anti-microbial properties, though the chemical process in bamboo rayon destroys any anti-microbial quality.[27]

In addition, the fiber of bamboo has been used to make paper in China since early times. A high quality hand-made paper is still produced in small quantities. Coarse bamboo paper is still used to make spirit money in many Chinese communities.[28]

Musical instruments

Bamboo's natural hollow form makes it an obvious choice for many instruments, particularly wind and percussion. There are numerous types of bamboo flute made all over the world, such as the dizi, xiao, shakuhachi, palendag, jinghu, angklung. In India it is a very popular and highly respected musical instrument, available even to the poorest and the choice of many highly venerated maestros of classical music. It is known and revered above all as the divine flute forever associated with Lord Krishna, who is always portrayed holding a bansuri in sculptures and paintings. The Bamboo Organ of Las Piñas, Philippines has pipes made of bamboo culms. Four of the instruments used in Polynesia for traditional hula are made of bamboo: nose flute, rattle, stamping pipes and the Jew's harp. Bamboo may be used in the construction of the Australian didgeridoo instead of the more traditional eucalyptus wood. In Indonesia, bamboo has been used for making various kinds of musical instruments including the kolintang and the angklung. The modern amplified string instrument the Chapman Stick is also constructed using bamboo. The khene (also spelled "khaen", "kaen" and "khen"; Lao: ແຄນ, Thai: แคน) is a mouth organ of Lao origin whose pipes, which are usually made of bamboo, are connected with a small, hollowed-out hardwood reservoir into which air is blown, creating a sound similar to that of the violin. In the Indian Ocean island of Madagascar, the valiha, a long tube zither made of a single bamboo stalk, is considered the national instrument.


Water processing
Bamboo as a versatile material is demonstrated by its use in water desalination. A Bamboo filter is used to remove the salt from saltwater.
Transportation

Several manufacturers offer bamboo bicycles.

Monday, October 11, 2010

ชนิดของปลวก

ปลวก (Termites) แมลงที่ว่าร้ายนัก ในประเทศไทยปลวกเป็นแมลงที่นับว่าเป็นศัตรูสำคัญต่อเศรษฐกิจของประเทศทั้งโดยทางตรงและทางอ้อม โดยเฉพาะอย่างยิ่งทางด้านการเกษตร ป่าไม้ เช่น การทำลายต้นไม้ ที่ยังไม่ตัดโค่นและที่โค่นแล้ว ทำความเสียหายแก่อาคารบ้านเรือน สิ่งก่อสร้าง เครื่องเรือน วัสดุต่างๆ ที่ทำด้วยไม้และฝ้าย เป็นต้น
จากผลการสำรวจความเสียหายดังกล่าวข้างต้น ประมาณได้ว่ามีมูลค่าไม่ต่ำกว่าหนึ่งร้อยล้านบาทต่อปี นับ ว่าปลวกเป็นแมลงที่ทำลายเศรษฐกิจที่สำคัญชนิดหนึ่ง จึงควรทำความรู้จักถึงชนิดและความเป็นอยู่ของปลวก เพื่อใช้เป็นข้อมูลประกอบการป้องกันกำจัดต่อไป ปลวกเป็นแมลงที่มีชื่อเรียกภาษาอังกฤษว่า เทอร์ไมต์ (Termite) หรือบางทีเรียกว่ามดสีขาว (White ant)จัดเป็นแมลงในอันดับไอสอปเทอรา (Order Isoptera) ในอันดับนี้มีปลวกวงศ์ใหญ่อยู่ 3 วงศ์ คือ วงศ์ Kalotermitidae วงศ์ Termitidae และวงศ์ Rhinotermitidae ซึ่งมีความสำคัญทางเศรษฐกิจ ในโลกใบนี้เราพบปลวกประมาณ 2,000 ชนิด เฉพาะในภูมิภาคเอเชียตะวันออกเฉียงใต้มีประมาณ 270 ชนิด พบในประเทศไทยประมาณ 90 ชนิด ปลวกที่มีความสำคัญทางเศรษฐกิจในประเทศมีเพียง 11 ชนิด
สำหรับพวกที่เป็นภัยร้ายแรงต่อสิ่งก่อสร้างและส่วนประกอบของอาคารบ้านเรือนที่ทำด้วยวัสดุไม้คือ

1. ปลวกไม้แห้ง (Drywood termites) เป็น ปลวกที่สามารถดำรงชีวิตได้ในเนื้อไม้ที่แห้งสนิท เมื่อปลวกกัดกินเนื้อไม้จะทิ้งมูลมีลักษณะเป็นเม็ดเล็กๆ คล้ายเมล็ดฝิ่นออกจากรูที่มีขนาดเล็กในประเทศไทยพบชนิดสำคัญ 2 ชนิด คือ Cryptotermes thailandis และCryptotermes domesticus ซึ่งทำลายวัสดุที่ทำด้วยไม้ในอาคารบ้านเรือน

2. ปลวกใต้ดิน (Subterranean termites) เป็นปลวกที่อาศัยอยู่ใต้ดินเกือบตลอดอายุของมันและนับเป็นประเภทที่เป็นภัยร้ายแรงต่ออาคาร และสิ่งก่อสร้าง เพราะความเสียหายที่เกิดจากปลวกพวกนี้มีถึง 95% ชนิดที่สำคัญ 2 ชนิด คือ Coptotermes gestroi และ Globitermes sulphureus ปลวกจะขึ้นมาหาอาหารโดยการทำท่อทางเดินหรืออุโมงค์ด้วยดินเพื่อใช้เป็นทางเดินไปยังแหล่งอาหาร เช่น ตามผิวไม้ คอนกรีต สิ่งปลูกสร้างอื่นๆ ตามรอยแตกหรือช่องระหว่างพื้นบ้านกับพื้นดิน ถ้าระยะไม่ห่างเกินไปปลวกจะสร้างท่อทางเดินข้ามไปได้ ในเนื้อไม้ที่ปลวกใต้ดินเจาะทำลายภายในแล้ว จะเหลือส่วนนอกไว้เป็นแผ่นบางๆ ตอนในที่กลวงมันจะใช้ดินอุดตามช่องว่างไว้ไม่ให้ผิวไม้ยุบ

ปลวกอาศัยอยู่รวมกันเป็นสังคม ในแต่ละสังคมแบ่งออกได้เป็น 3 แบบ ตามรูปร่างและหน้าที่การทำงาน คือ ปลวกแม่รังและพ่อรัง (ปลวกราชินี-ราชา หรือปลวกตัวเมียและตัวผู้) ปลวกทหารและปลวกกรรมกร

ปลวกตัวเมียและตัวผู้ คือปลวกที่มีปีกบินได้ เราเรียกว่า แมลงเม่าซึ่งจะออกมาบินเล่นไฟในช่วงก่อนฝนตก มีหน้าที่กระจายพันธุ์และจัดตั้งสังคมหรือรังใหม่ เมื่อแมลงเม่าผสมพันธุ์กันแล้วสลัดปีกหลุดจะมุดตัวลงในดินเพื่อวางไข่และสร้างรังต่อไป ปลวก ตัวเมียจะพัฒนาตัวเองเป็นปลวกแม่รัง ทำหน้าที่ผสมพันธุ์และวางไข่เพียงอย่างเดียวปลวกคู่แรกที่ทำหน้าที่เป็น ราชินีและราชาของรังบางตัวมีอายุได้นานเกือบ 25 ปี และวางไข่ได้มากถึงวันละ 30,000 ฟอง ความสามารถในการวางไข่จะขึ้นอยู่กับจำนวนปลวกกรรมกร

ในขณะที่ไข่เจริญเป็นตัวอ่อนและตัวแก่ภายในระยะ 30-50 วันนั้นปลวก ราชินีจะเป็นตัวควบคุมตัวอ่อนให้พัฒนาบทบาทเป็นแบบต่างๆ คือ เป็นตัวผู้-ตัวเมีย เป็นปลวกกรรมกร หรือทหารปลวกกรรมกร มีปริมาณมากที่สุดกว่า 90% นั้น ลักษณะไม่มีปีก ส่วนปากมีขากรรไกรแบบฟันเลื่อยเหมาะสำหรับตัดไม้ เจาะไม้ สิ่งก่อสร้างต่างๆ มีหน้าที่สร้างซ่อมแซมรัง หาอาหารเลี้ยงดู ปลวก อื่นๆ ปลวกกรรมกรเป็นหมัน ผสมพันธุ์และสืบพันธุ์ไม่ได้ ปลวกทหาร ซึ่งมีจำนวนน้อยมากสังเกตเห็นลักษณะที่แตกต่างจากปลวกกรรมกร คือ มีหัวโตผิดปกติ ไม่มีตาที่มองเห็นได้ ส่วนของปากมีขากรรไกรขนาดใหญ่รูปลักษณะคล้ายคีมหรือดาบ เหมาะสำหรับใช้ในการต่อสู้แต่ไม่สามารถใช้ตัดหรือเจาะได้จึงมีหน้าที่ต่อสู้ เพื่อป้องกันอันตรายให้ปลวกภายในรัง โดยเฉพาะศัตรูสำคัญ คือ มด เมื่อศัตรูทำลายทางเดินหรือรัง มันจะเอาส่วนหัว ที่โตอุดช่องโหว่หรือขับไล่ศัตรูจนกว่าจนกว่าปลวกกรรมกรจะทำการซ่อมรังเรียบ ร้อยปลวกทหารบางชนิดสามารถกลั่นของเหลวที่มีพิษเป็นกรดเหนียวๆ ออกจากส่วนหัวของมัน เมื่อมดมาถูกจะเหนียวติดและหมดกำลัง นอก จากนี้กรดที่ปลวกทหารกลั่นออกมายังใช้ในการเจาะโลหะและหินปูนได้ดีอีกด้วย จึงเห็นได้ว่า ปลวกจะแบ่งแยกหน้าที่กันอย่างชัดเจนในลักษณะแมลงสังคมชนิดหนึ่ง

ปลวกมีการแพร่พันธุ์อย่างรวดเร็ว ปลวกตัวผู้และตัวเมียในรัง ที่มีอายุ 3 ปี จะกระจายพันธุ์ไปนอกรังเพื่อจัดตั้งรังใหม่ปีละ 1-2 ครั้ง ระหว่างต้นฤดูฝนหลังฝนตกใหม่ๆโดยบินจากรังเก่าในลักษณะแมลงเม่า ผสมพันธุ์แล้วสลัดปีกมุดลงดินเพื่อสร้างรังใหม่ วน เวียนกันเช่นนี้ ดังนั้นปลวกจึงมีจำนวนมากมายและเป็นปัญหาใหญ่ยากที่จะกำจัดให้หมดไปได้โดย ง่าย วิธีการที่ทำได้คือการป้องกันไม่ให้ปลวกก่อความเสียหายแก่ทรัพย์สินต่างๆ เท่านั้น อาหารหลักของปลวก คือ เซลลูโลสที่ได้จากเนื้อไม้ การกัดทำลายสิ่งของที่มี เซลลูโลสเป็นส่วนประกอบก็เพื่อนำมาใช้เป็นอาหารและที่อยู่อาศัย นอกจากนี้ซากปลวกหรือวัตถุเหลวๆ ตามตัวปลวกยังใช้กินเป็นอาหารได้ นิสัยของปลวกใช้การสื่อสารโดยสัมผัสกันตลอดเวลาจึงเป็นช่องทางหนึ่งในการ กำจัดปลวก หากปลวกได้สัมผัสสารพิษที่ใช้กำจัด จะถ่ายทอดสารพิษติดต่อถึงกันโดยง่ายและจะทำให้ปลวกตายทั้งหมดได้

ปลวกไม้

ปลวกตัวแรกของโลกถือกำเนิดเมื่อประมาณ 220 ล้านปีมาแล้ว การขุดพบซากฟอสซิลของปลวก โดย E.M. Bordy แห่งมหาวิทยาลัย Witwatersrand ในแอฟริกาใต้ทำให้นักชีววิทยาสัตว์ดึกดำบรรพ์รู้ว่าปลวกโบราณมีรูปร่างที่ ละม้ายคล้ายคลึงแมลงสาบปัจจุบันมาก แต่มีขนาดเล็กกว่า และมีผิวอ่อนนุ่มกว่า ถึงแม้โลกทุกวันนี้มีปลวกมากกว่า 2,000 ชนิด แต่ก็มีเพียงไม่กี่ชนิดที่ชอบอาศัยอยู่ในเนื้อไม้ของอาคารบ้านเรือน ซึ่งนับเป็นภัยต่อที่อยู่อาศัย เพราะปลวกจะกัดกินสรรพสิ่งที่ทำด้วยไม้จนหมด และนั่นก็หมายความว่า เจ้าของบ้านจะต้องอพยพออกจากบ้านในที่สุด

ปลวกเป็นสัตว์สังคมที่ชอบอยู่รวมกันเป็นฝูง มันทำมาหากินและดูแลกันอย่างเป็นทีม ลักษณะนิสัยเช่นนี้ทำให้มนุษย์หรือสัตว์อื่นๆ ปราบปรามหรือกำจัดมันได้ยาก ดังนั้น เวลาจะสร้างบ้าน เจ้าของบ้านควรใช้วิธีฉีดสารเคมีตามรังของมันที่อาจอยู่ในตอไม้หรือเศษไม้ ใต้ดินให้ทั่ว เพื่อจะได้มั่นใจว่าปลวกตายหมด เพราะเหตุว่ายากำจัดปลวกเป็นพิษต่อสิ่งมีชีวิตซึ่งหมายถึงมนุษย์ด้วย ดังนั้น การพ่นยากำจัดปลวกจึงต้องดำเนินไปอย่างระมัดระวังและสม่ำเสมอ โดยไม่ต้องรอให้แมลงเม่า ซึ่งเป็นปลวกในระยะสืบพันธุ์ต้องบินว่อนออกมา เพราะถ้าถึงเวลานั้น ทุกอย่างที่เป็นชิ้นส่วนของบ้านก็ตกอยู่ในภาวะอันตรายเรียบร้อยแล้ว

การใช้ชีวิตส่วนใหญ่อยู่ในจอมปลวก และใต้ดินทำให้เราไม่ได้ศึกษาธรรมชาติของปลวกอย่างใกล้ชิด จนทำให้คนหลายคนคิดว่าปลวกคือ มดขาว แต่ในความเป็นจริงปลวกและมดเป็นสัตว์คนละชนิดกัน เพราะมดเป็นสัตว์ในอันดับ Hymenoptera และปลวกอยู่ในอันดับ Isoptera ทั้งนี้เพราะปีกของมดสั้น และมีขนาดไม่เท่ากัน แต่ปีกของปลวกยาวและใหญ่เกินตัว อีกทั้งมีขนาดเท่ากันด้วย นอกจากความแตกต่างเรื่องปีกแล้ว สรีระส่วนที่เป็นเอวก็แตกต่างกัน คือมดมีเอว แต่ปลวกไม่มี และเวลามดตัวผู้ผสมพันธุ์กับราชินีมดแล้ว มันจะตายในเวลาต่อมาอีกไม่นาน ส่วนปลวกตัวผู้เมื่อได้เสพสมกับราชินีปลวกแล้ว มันจะช่วยกันสร้างอาณาจักรปลวกให้มีบริเวณเพียงพอสำหรับให้ลูกปลวกเจริญเติบ โต เพราะราชินีปลวกที่เติบโตเต็มที่อาจมีลำตัวยาวตั้งแต่ 9-12 เซนติเมตร และเวลาตั้งครรภ์ มันจะเดินไปไหนมาไหนไม่ได้ ถึงกระนั้นมันก็ไม่อดอาหารตาย เพราะมันมีปลวกงานที่มีนิสัยขี้อายแต่ขยันขันแข็งเดินหน้าหาอาหารมาให้ ราชินีของมันเสวยตลอดวัน และมันยังช่วยทำความสะอาดตัวให้ราชินีของมันด้วย โดยการเลียตามตัวตลอดเวลา และเมื่อราชินีปลวกวางไข่แล้ว ปลวกงานก็จะขนไข่ไปเรียงให้เป็นที่เป็นทาง และหาอาหารมาเลี้ยงปลวกอ่อนที่ยังช่วยตัวเองไม่ได้ด้วย นักชีววิทยายังพบอีกว่า ปลวกบางชนิดรู้จักทำสวนรา ซึ่งให้ cellulose อันเป็นอาหารโปรดของมัน โดยมันจะขนใบหญ้าใบไม้มาวางกองจนใบไม้กลายสภาพเป็นรา อนึ่งราที่กำลังเจริญเติบโต มันจะคายไอน้ำออกมา ทำให้ความชื้นของบรรยากาศในรังอยู่ที่ระดับพอดีด้วย

ส่วนราชาปลวกนั้น ไม่ต้องทำมาหากินใดๆ เพราะอาณาจักรปลวกได้กำหนดหน้าที่หาอาหารให้ปลวกงานทำแล้ว มันจึงมีหน้าที่อย่างเดียวเท่านั้น คือสืบพันธุ์กับราชินีปลวกในเวลากลางคืน ซึ่งเป็นยามที่ศัตรูปลวกอันได้แก่ มด แมลงเต่าทอง ตัวต่อ กิ้งก่า ตะกวด ตะขาบ และคนนอนหลับพักผ่อน ทำให้ประสิทธิภาพในการสร้างปลวกอ่อนของมันไม่ถูกกระทบกระเทือน

ปลวกทหารเป็นปลวกอีกประเภทหนึ่งที่น่าสนใจ ปลวกประเภทนี้มีเขี้ยวสำหรับต่อสู้ศัตรูเช่น มดที่ชอบขโมยไข่ปลวกไปกิน ถึงแม้มดจะมีขนาดใหญ่กว่า และปลวกไม่มีตาจะเห็นข้าศึก แต่ปลวกทหารก็สามารถป้องกันรังของมันได้อย่างไม่ย่อท้อ โดยมันจะใช้เขี้ยวกัดแล้วปล่อยยางเหนียวๆ ออกมาตามตัวมด ซึ่งจะส่งกลิ่นล่อให้ปลวกทหารตัวอื่นๆ เข้ามากลุ้มรุมกัดมดที่บุกรุกรังมันจนตาย

อาณาจักรปลวกมีการปกครองแบบสมบูรณาสิทธิราชย์ คือมีราชินีปลวกเป็นเจ้าแม่ผู้ทรงอำนาจสูงสุด เพราะเจ้าแม่ปลวกบางพันธุ์อาจมีอายุยืนนานถึง 100 ปี ดังนั้น การมีประสิทธิภาพสูงในการผลิตปลวก จึงทำให้สมาชิกปลวกมีจำนวนเพิ่มขึ้นๆ ตลอดเวลา และนั่นก็หมายความว่า รังปลวกจะต้องมีขนาดใหญ่ขึ้นเรื่อยๆ แต่ก็ไม่มีปัญหาใดๆ เพราะปลวกงานมีความสามารถด้านสถาปัตยกรรมสูง โดยมันจะขนดินจากใต้ดินขึ้นมาบนดิน และวางให้เป็นกองแล้วใช้น้ำลายเป็นตัวเชื่อมเนื้อดิน จนได้จอมปลวกที่อาจสูงถึง 7 เมตร และนั่นก็หมายความว่า ถ้ามนุษย์จะเก่งเท่าปลวกในการสร้างบ้าน เราต้องสร้างตึกให้สูงเท่าดอยอินทนนท์ การไม่มีตาจะดู ทำให้ปลวกไม่รู้แม้แต่น้อยว่ารูปร่างในภาพรวมของรังมันมีหน้าตาอย่างไร แต่ในรายละเอียดเล็กน้อยมันรู้ดีเช่น มันรู้ว่ามันต้องสร้างรังให้เอียงเพื่อป้องกันไม่ให้น้ำท่วมขัง และรังของมันต้องมีรูระบายอากาศเข้าออก อีกทั้งรูต้องมีลิ้นปิดเปิดให้ความชื้นภายในรังอยู่ที่ระดับพอดี สำหรับปลวก 2 ล้านตัวด้วย ทั้งๆ ที่ปลวกเหล่านี้หายใจก๊าซคาร์บอนไดออกไซด์ออกมาชั่วโมงละ 40 ลิตร

ความสามารถด้านกินของปลวกก็เป็นเรื่องมหัศจรรย์ เพราะมันกินได้ทั้ง cellulose และยางที่หุ้มสายโทรศัพท์หรือสายไฟฟ้า และในยามที่อาหารขาดแคลน มันก็อาจกินญาติที่อ่อนแอและลูกอ่อน หรือเวลาราชินีปลวกสิ้นพระชนม์ ปลวกบริวารก็จะจับซากราชินีมาสังเวยกินกัน

ในวารสาร Nature ฉบับที่ 415 ประจำวันที่ 3 มกราคม พ.ศ. 2545 M. A. Merbach แห่งมหาวิทยาลัย Wolfgang Goethe ในประเทศเยอรมนี กับคณะได้รายงานว่า ต้นหม้อข้าวหม้อแกงลิง Nepenthes albomarginata ซึ่งตามปกติจะหาอาหารโดยวิธีล่อสัตว์ขนาดเล็กเช่น มดให้ตกลงไปในโพรงหม้อ แล้วมันก็ขับน้ำย่อยออกมาย่อยเหยื่อที่เคราะห์ร้ายนั้น ใช้ขน (trichome) ที่ขึ้นตามบริเวณขอบปากหม้อล่อปลวก Hospitalitermes bicolor ให้เดินไปสู่ความตาย เพราะปลวกชนิดนี้เวลาเห็นขนขาวที่ขอบปากหม้อ มันจะหันกลับมาบอกเพื่อนปลวกให้เดินไปกินขนเหล่านั้นจนบริเวณขอบปากหม้อโล่งและลื่น ทำให้ปลวกทั้งหลายร่วงตกลงในหม้อ ถึงชั่วโมงละ 22 ตัว และเมื่อขนบริเวณขอบปากไม่มีแล้ว ต้นหม้อข้าวหม้อแกงลิงต้นนั้น ก็ไม่เป็นที่พึงประสงค์ของปลวกใดๆ อีกต่อไป งานวิจัยนี้มีความสำคัญตรงที่ได้พบว่า N. albomarginata เป็นพืชกินสัตว์ชนิดแรกที่ใช้เนื้อเยื่อของตนล่อสัตว์ให้ตกเป็นเหยื่อ

ในวารสาร Proceedings of the National Academy of Sciences ฉบับที่ 99 หน้า 6,838 ปี พ.ศ. 2545 J. Traniello แห่งมหาวิทยาลัย Boston ในสหรัฐอเมริกาได้รายงานว่า ปลวกมีการฉีดวัคซีนป้องกันโรคเหมือนมนุษย์ และนี่ก็คือเหตุผลหลักที่ทำให้สัตว์สังคมชนิดนี้มีอายุยืนนานนับ 200 ล้านปี โดย Traniello ได้อ้างถึงกรณีมดที่เวลาตายลง มดตัวอื่นๆ จะช่วยกันขนศพมดออกจากรังทันที เพื่อไม่ให้โรคจากมดตายมาคุกคามมดที่ยังมีชีวิตอยู่ หรือผึ้งเวลาราในรังระบาด มันก็จะรวมกลุ่มกันทำให้บริเวณที่มันเกาะกลุ่มนั้นมีอุณหภูมิสูงจนสามารถฆ่าราได้ นั่นคือสัตว์สังคมเหล่านี้มีวิธีป้องกันโรคระบาดด้วยวิธีต่างๆ กัน ปลวก Zootermorpsis angustieollis ก็เช่นกัน เวลามีโรคระบาด ปลวกที่รอดตายจะมีภูมิคุ้มกัน และมันจะถ่ายทอดภูมิคุ้มกันนี้สู่ปลวกตัวอื่นๆ โดยถ่ายบักเตรีในกระเพาะให้ปลวกอื่นกิน ดังนั้น บักเตรีซึ่งสามารถทำหน้าที่ภูมิคุ้มกัน จึงสามารถผ่านจากปลวกตัวหนึ่งไปสู่ปลวกตัวอื่นๆ ได้

ณ วันนี้ ปลวกกำลังคุกคามอาคารสถานที่อยู่อาศัยของมนุษย์ทั่วโลก โดยเฉพาะในสหรัฐอเมริกา ซึ่งต้องใช้งบประมาณ 45,000 ล้านบาท/ปี ในการต่อสู้ปลวก Formosan การสำรวจทำให้รู้ว่าขณะนี้ปลวก Formosan ในอเมริกามีประมาณ 500,000-3.5 ล้านตัว ปลวกอันตรายพันธุ์นี้ได้ติดมากับเรือจากเอเชียเมื่อประมาณ 60 ปีก่อนนี้ และขณะนี้ได้เข้ามาอาศัยอยู่ตามต้นไม้ ตามบ้านในรัฐทางใต้ และฮาวาย โดยเฉพาะที่เมือง New Orleans มีปลวก Coptotermes formosanus มากเป็นพิเศษ เพราะที่นี่มีอากาศอบอุ่น มีความชื้นสูง และบ้านไม้ในเมืองมักมีเถาวัลย์ปกคลุม

อนึ่งในการต่อสู้ปลวกนั้น คนกำจัดปลวกใช้กล้อง infrared ส่องตามผนัง เพราะรู้ว่าถ้าที่ใดมีปลวกอาศัยอยู่บริเวณนั้น จะมีความร้อนมาก ปลวกจำนวนมากจะแผ่รังสีอินฟราเรดออกมามากซึ่งกล้องสามารถรับได้ นักกำจัดปลวกบางคนใช้วิธีส่งคลื่น microwave ไปกระทบผนัง ถ้าคลื่นกระทบปลวกที่กำลังเคลื่อนที่ คลื่นที่สะท้อนกลับออกมาจะทำให้เจ้าหน้าที่รู้ได้ว่าภายในกำแพงหรือผนังนั้น มีปลวกหรือไม่ และเมื่อรู้ว่าปลวกมีจริงแล้ว หน้าที่ต่อไปคือ กำจัดมันโดยอาจใช้ยาฉีดที่ทำด้วย hexaflumuron ซึ่งจะทำให้ปลวกที่ลอกคราบมีปัญหา เพราะสารเคมีชนิดนี้สามารถทำให้เปลือกหุ้มตัวปลวกไม่แข็งตัว และปลวกก็จะตาย หรือฉีดพ่นด้วย chlorfenapyr ก็เป็นการฆ่าปลวกด้วยสารเคมีอีกวิธีหนึ่ง วิธีการเปลี่ยนแปลงยีน (gene) ก็เป็นอีกวิธีหนึ่งที่กำลังได้รับการพิจารณาว่าเป็นวิธีกำจัดที่ดี โดยพยายามเปลี่ยนแปลงตัวอ่อน เป็นปลวกทหารให้หมด เพราะปลวกทหารเป็นหมัน และไม่มีหน้าที่หาอาหาร ดังนั้น ถ้ารังปลวกมีปลวกทหารมาก ปลวกงานก็ต้องหาอาหารมากขึ้นๆ จนในที่สุดปลวกงานก็จะล้มตาย และปลวกทหารก็จะล้มตาย

Termite

The termites are a group of eusocial insects usually classified at the taxonomic rank of order Isoptera (but see also taxonomy below). Along with ants and some bees and wasps which are all placed in the separate order Hymenoptera, termites divide labour among gender lines, produce overlapping generations and take care of young collectively. Termites mostly feed on dead plant material, generally in the form of wood, leaf litter, soil, or animal dung, and about 10% of the estimated 4,000 species (about 2,600 taxonomically known) are economically significant as pests that can cause serious structural damage to buildings, crops or plantation forests. Termites are major detritivores, particularly in the subtropical and tropical regions, and their recycling of wood and other plant matter is of considerable ecological importance.

As eusocial insects, termites live in colonies that, at maturity, number from several hundred to several million individuals. Colonies use a decentralised, self-organised systems of activity guided by swarm intelligence to exploit food sources and environments that could not be available to any single insect acting alone. A typical colony contains nymphs (semi-mature young), workers, soldiers, and reproductive individuals of both genders, sometimes containing several egg-laying queens.

Termites are sometimes called "white ants", though they are not closely related to true ants.

Social organization
Reproductives

A female that has flown, mated, and is producing eggs is called a "queen". Similarly, a male that has flown, mated, and remains in proximity to a queen, is termed a "king". Research using genetic techniques to determine relatedness of colony members is showing that the idea that colonies are only ever headed by a monogamous royal pair is wrong. Multiple pairs of reproductives within a colony are not uncommon. In the families Rhinotermitidae and Termitidae, and possibly others, sperm competition does not seem to occur (male genitalia are very simple and the sperm are anucleate), suggesting that only one male (king) generally mates within the colony.

At maturity, a primary queen has a great capacity to lay eggs. In physogastric species, the queen adds an extra set of ovaries with each molt, resulting in a greatly distended abdomen and increased fecundity, often reported to reach a production of more than two thousand eggs a day. The distended abdomen increases the queen's body length to several times more than before mating and reduces her ability to move freely, though attendant workers provide assistance. The queen is widely believed to be a primary source of pheromones useful in colony integration, and these are thought to be spread through shared feeding (trophallaxis).

The king grows only slightly larger after initial mating and continues to mate with the queen for life. This is very different from ant colonies, in which a queen mates once with the male(s) and stores the gametes for life, and the male ants die shortly after mating.

The winged (or 'alate') caste, also referred to as the reproductive caste, are generally the only termites with well-developed eyes (although workers of some harvesting species do have well-developed compound eyes, and, in other species, soldiers with eyes occasionally appear). Termites on the path to becoming alates (going through incomplete metamorphosis) form a sub-caste in certain species of termites, functioning as workers ('pseudergates') and also as potential supplementary reproductives. Supplementaries have the ability to replace a dead primary reproductive and, at least in some species, several are recruited once a primary queen is lost.

In areas with a distinct dry season, the alates leave the nest in large swarms after the first good soaking rain of the rainy season. In other regions, flights may occur throughout the year or more commonly in the spring and autumn. Termites are relatively poor fliers and are readily blown downwind in windspeeds of less than 2 km/h, shedding their wings soon after landing at an acceptable site, where they mate and attempt to form a nest in damp timber or earth.

Workers
Worker termite

Worker termites undertake the labors of foraging, food storage, brood and nest maintenance, and some defense duties in certain species. Workers are the main caste in the colony for the digestion of cellulose in food and are the most likely to be found in infested wood. This is achieved in one of two ways. In all termite families except the Termitidae, there are flagellate protists in the gut that assist in cellulose digestion. However, in the Termitidae, which account for approximately 60% of all termite species, the flagellates have been lost and this digestive role is taken up, in part, by a consortium of prokaryotic organisms. This simple story, which has been in entomology textbooks for decades, is complicated by the finding that all studied termites can produce their own cellulase enzymes, and therefore can digest wood in the absence of their symbiotic microbes. Our knowledge of the relationships between the microbial and termite parts of their digestion is still rudimentary. What is true in all termite species, however, is that the workers feed the other members of the colony with substances derived from the digestion of plant material, either from the mouth or anus. This process of feeding of one colony member by another is known as trophallaxis and is one of the keys to the success of the group. It frees the parents from feeding all but the first generation of offspring, allowing for the group to grow much larger and ensuring that the necessary gut symbionts are transferred from one generation to another. Some termite species do not have a true worker caste, instead relying on nymphs that perform the same work without moulting into a separate caste.

Soldiers
Termites with some nasute soldiers

The soldier caste has anatomical and behavioural specializations, providing strength and armour which are primarily useful against ant attack. The proportion of soldiers within a colony varies both within and among species. Many soldiers have jaws so enlarged that they cannot feed themselves, but instead, like juveniles, are fed by workers. The pan-tropical sub-family Nasutitermitinae have soldiers with the ability to exude noxious liquids through either a horn-like nozzle (nasus) or simple hole in the head (fontanelle). Fontanelles which exude defensive secretions are also a feature of the family Rhinotermitidae. Many species are readily identified using the characteristics of the soldiers' heads, mandibles, or nasus. Among the drywood termites, a soldier's globular ("phragmotic") head can be used to block their narrow tunnels. Termite soldiers are usually blind, but in some families, soldiers developing from the reproductive line may have at least partly functional eyes.
A nasute

The specialization of the soldier caste is principally a defense against predation by ants. The wide range of jaw types and phragmotic heads provides methods which effectively block narrow termite tunnels against ant entry. A tunnel-blocking soldier can rebuff attacks from many ants. Usually more soldiers stand by behind the initial soldier so once the first one falls another soldier will take the place. In cases where the intrusion is coming from a breach that is larger than the soldier's head, defense requires special formations where soldiers form a phalanx-like formation around the breach and blindly bite at intruders or shoot toxic glue from the nasus. This formation involves self-sacrifice because once the workers have repaired the breach during fighting, no return is provided, thus leading to the death of all defenders. Another form of self-sacrifice is performed by South-East Asian tar-baby termites (Globitermes sulphureus). The soldiers of this species commit suicide by autothysis - rupturing a large gland just beneath the surface of their cuticle. The thick yellow fluid in the gland becomes very sticky on contact with the air, entangling ants or other insects who are trying to invade the nest.

Termites undergo incomplete metamorphosis, with their freshly hatched young taking the form of tiny termites that grow without significant morphological changes (other than wings and soldier specializations). Some species of termite have dimorphic soldiers (up to three times the size of smaller soldiers). Though their value is unknown, speculation is that they may function as an elite class that defends only the inner tunnels of the mound. Evidence for this is that, even when provoked, these large soldiers do not defend themselves but retreat deeper into the mound. On the other hand, dimorphic soldiers are common in some Australian species of Schedorhinotermes that neither build mounds nor appear to maintain complex nest structures. Some termite taxa are without soldiers; perhaps the best known of these are the Apicotermitinae

Diet

Termites are generally grouped according to their feeding behaviour. Thus, the commonly used general groupings are subterranean, soil-feeding, drywood, dampwood, and grass-eating. Of these, subterraneans and drywoods are primarily responsible for damage to human-made structures.

All termites eat cellulose in its various forms as plant fibre. Cellulose is a rich energy source (as demonstrated by the amount of energy released when wood is burned), but remains difficult to digest. Termites rely primarily upon symbiotic protozoa (metamonads) such as Trichonympha, and other microbes in their gut to digest the cellulose for them and absorb the end products for their own use. Gut protozoa, such as Trichonympha, in turn rely on symbiotic bacteria embedded on their surfaces to produce some of the necessary digestive enzymes. This relationship is one of the finest examples of mutualism among animals. Most so called "higher termites", especially in the Family Termitidae, can produce their own cellulase enzymes. However, they still retain a rich gut fauna and primarily rely upon the bacteria. Due to closely related bacterial species, it is strongly presumed that the termites' gut flora are descended from the gut flora of the ancestral wood-eating cockroaches, like those of the genus Cryptocercus.

Some species of termite practice fungiculture. They maintain a 'garden' of specialized fungi of genus Termitomyces, which are nourished by the excrement of the insects. When the fungi are eaten, their spores pass undamaged through the intestines of the termites to complete the cycle by germinating in the fresh faecal pellets.[3][4] They are also well known for eating smaller insects in a last resort environment.

Nests
An arboreal termite nest in Mexico

Termite workers build and maintain nests to house their colony. These are elaborate structures made using a combination of soil, mud, chewed wood/cellulose, saliva, and faeces. A nest has many functions such as to provide a protected living space and to collect water through condensation. There are reproductive chambers and some species even maintain fungal gardens which are fed on collected plant matter, providing a nutritious mycelium on which the colony then feeds (see "Diet", above). Nests are punctuated by a maze of tunnel-like galleries that effectively provide air conditioning and control the CO2/O2 balance, as well as allow the termites to move through the nest.

Nests are commonly built underground, in large pieces of timber, inside fallen trees or atop living trees. Some species build nests above-ground, and they can develop into mounds. Homeowners need to be careful of tree stumps that have not been dug up. These are prime candidates for termite nests and being close to homes, termites usually end up destroying the siding and sometimes even wooden beams.
[edit] Mounds
Termite mound in Tanzania

Mounds (also known as "termitaria"[5]) occur when an above-ground nest grows beyond its initially concaling surface. They are commonly called "anthills" in Africa and Australia, despite the technical incorrectness of that name.

In tropical savannas the mounds may be very large, with an extreme of 9 metres (30 ft) high in the case of large conical mounds constructed by some Macrotermes species in well-wooded areas in Africa[6]. Two to three metres, however, would be typical for the largest mounds in most savannas. The shape ranges from somewhat amorphous domes or cones usually covered in grass and/or woody shrubs, to sculptured hard earth mounds, or a mixture of the two. Despite the irregular mound shapes, the different species in an area can usually be identified by simply looking at the mounds.

The sculptured mounds sometimes have elaborate and distinctive blue forms, such as those of the compass termite (Amitermes meridionalis & A. laurensis) which build tall wedge-shaped mounds with the long axis oriented approximately north-south. This orientation has been experimentally shown to help in thermoregulation.

The column of hot air rising in the above ground mounds helps drive air circulation currents inside the subterranean network. The structure of these mounds can be quite complex. The temperature control is essential for those species that cultivate fungal gardens and even for those that don't, much effort and energy is spent maintaining the brood within a narrow temperature range, often only plus or minus one degree C over a day.

In some parts of the African savanna, a high density of above-ground mounds dominates the landscape. For instance, in some parts of the Busanga Plain area of Zambia, small mounds of about 1 m diameter with a density of about 100 per hectare can be seen on grassland between larger tree- and bush-covered mounds about 25 m in diameter with a density around 1 per hectare, and both show up well on high-resolution satellite images taken in the wet season.[7].

Shelter tunnels
Tunnels on a tree trunk provide a passage from the nest to the forest floor

Termites are very weak and fragile insects. They can be easily overpowered by ants and other predators when exposed. To avoid these perils termites cover their tracks with tubing made of faeces, plant matter, and soil. Thus the termites can remain hidden and wall out unfavourable environmental conditions. Sometimes these shelter tubes will extend for many metres, such as up the outside of a tree reaching from the soil to dead branches.

To a subterranean termite any breach of their tunnels or nest is a cause for alarm. When the Formosan subterranean termite (Coptotermes formosanus) and the Eastern subterranean termite (Reticulitermes flavipes) detect a potential breach, the soldiers will usually bang their heads apparently to attract other soldiers for defense and recruit additional workers to repair any breach.

Human interaction
[edit] Timber damage
The result of an infestation is severe wood damage
Termite damage on external structure
Termite damage in wooden house stumps

Due to their wood-eating habits, many termite species can do great damage to unprotected buildings and other wooden structures. Their habit of remaining concealed often results in their presence being undetected until the timbers are severely damaged and exhibit surface changes. Once termites have entered a building, they do not limit themselves to wood; they also damage paper, cloth, carpets, and other cellulosic materials. Particles taken from soft plastics, plaster, rubber, and sealants such as silicone rubber and acrylics are often employed in construction.

Humans have moved many wood-eating species between continents, but have also caused drastic population decline in others through habitat loss and pesticide application.

Precautions:

* Avoid contact of susceptible timber with ground by using termite-resistant concrete, steel, or masonry foundation with appropriate barriers. Even so, termites are able to bridge these with shelter tubes, and it has been known for termites to chew through piping made of soft plastics and even some metals, such as lead, to exploit moisture. In general, new buildings should be constructed with embedded physical termite barriers so that there are no easy means for termites to gain concealed entry. While barriers of poisoned soil, so called termite pre-treatment, have been in general use since the 1970s, it is preferable that these be used only for existing buildings without effective physical barriers.
* The intent of termite barriers (whether physical, poisoned soil, or some of the new poisoned plastics) is to prevent the termites from gaining unseen access to structures. In most instances, termites attempting to enter a barriered building will be forced into the less favourable approach of building shelter tubes up the outside walls, and thus, they can be clearly visible both to the building occupants and a range of predators.
* Timber treatment.
* Use of timber that is naturally resistant to termites such as Syncarpia glomulifera (Turpentine Tree), Callitris glaucophylla (White Cypress), or one of the Sequoias. Note that there is no tree species whose every individual tree yields only timbers that are immune to termite damage, so that even with well known termite-resistant timber types, there will occasionally be pieces that are attacked. No species of tree produces timber that is completely immune to damage from every species of termite, some individual pieces of wood may be attacked.

When termites have already penetrated a building, the first action is usually to destroy the colony with insecticides before removing the termites' means of access and fixing the problems that encouraged them in the first place. Baits (feeder stations) with small quantities of disruptive insect hormones or other very slow acting toxins have become the preferred least-toxic management tool in most western countries. This has replaced the dusting of toxins direct into termite tunnels that had been widely done since the early 1930s (originating in Australia). The main dust toxicants have been the inorganic metallic poison arsenic trioxide, insect growth regulators (hormones) such as triflumuron and, more recently fipronil, a phenyl-pyrazole. Blowing dusts into termite workings is a highly skilled process. All these slow-acting poisons can be distributed by the workers for hours or weeks before any symptoms occur and are capable of destroying the entire colony. More modern variations include chlorfluazuron, diflubenzuron, hexaflumuron, and novaflumuron as bait toxicants and fipronil and imidacloprid as soil poisons. Soil poisons are the least-preferred method of control as this requires much larger doses of toxin and results in uncontrollable release to the environment.

The termite’s effects are damaging, costing the southwestern United States approximately $1.5 billion each year in wood structure damage. In order to better control the population of termites, researchers at the Agricultural Research Service have found a way to track the movement of the destructive pests. In 1990, researchers found a way to safely and reliably track termites using immunoglobulin G (IgG) marker proteins from rabbits or chickens. In field tests, termite bait was laced with the rabbit IgG and the termites were randomly exposed to feeding on this bait. Termites were later collected from the field and tested for the rabbit-IgG markers using a rabbit-IgG-specific assay. However, this method of testing for the tracking proteins is expensive. Recently, researchers have developed a new way of tracking the termites using egg white, cow milk, or soy milk proteins which can be sprayed on the termites in the field. This new method is less expensive because the proteins can be traced using a protein-specific ELISA test. The ELISA test is more affordable because it is designed for mass production. Researchers hope to use this method of tracking termites to find a more cost-effective way to control the damaging pests. [2]
Agricultural Research Service scientists have developed a more affordable method to track the movement of termites using traceable proteins.
Agricultural Research Service scientists have developed a more affordable method to track the movement of termites using traceable proteins.[1]
[edit] Termites in the human diet

In many cultures, termites (particularly the winged ones known as alates) are used for food. The alates are nutritious, having a good store of fat and protein, and are palatable in most species with a nutty flavour when cooked. They are easily gathered at the beginning of the rainy season in West, Central and Southern Africa when they swarm, as they are attracted to lights and can be gathered up when they land on nets put up around a lamp. The wings are shed and can be removed by a technique similar to winnowing. They are best gently roasted on a hot plate or lightly fried until slightly crisp; oil is not usually needed since their bodies are naturally high in oil. Traditionally they make a welcome treat at the beginning of the rainy season when livestock is lean, new crops have not yet produced food, and stored produce from the previous growing season is running low.[citation needed]

They are also eaten in Indonesia, including Central Java, where they are roasted or fried.[citation needed]
[edit] Agriculture

Termites can be major agricultural pests, particularly in Africa and Asia, where crop losses can be severe. Counterbalancing this is the greatly improved water infiltration where termite tunnels in the soil allow rainwater to soak in deeply and help reduce runoff and consequent soil erosion.
[edit] Termites as a source of power

The US Department of Energy is researching ways to replace fossil fuels with renewable sources of cleaner energy, and termites are considered a possible way to reach this goal through metagenomics.[8]

Termites may produce up to two litres of hydrogen from digesting a single sheet of paper, making them one of the planet's most efficient bioreactors.[9] Termites achieve this high degree of efficiency by exploiting the metabolic capabilities of about 200 different species of microbes that inhabit their hindguts. The microbial community in the termite gut efficiently manufactures large quantities of hydrogen; the complex lignocellulose polymers within wood are broken down into simple sugars by fermenting bacteria in the termite's gut, using enzymes that produce hydrogen as a byproduct. A second wave of bacteria uses the simple sugars and hydrogen to make the acetate the termite requires for energy. By sequencing the termite's microbial community, the DOE hopes to get a better understanding of these biochemical pathways. If it can be determined which enzymes are used to create hydrogen, and which genes produce them, this process could potentially be scaled up with bioreactors to generate hydrogen from woody biomass, such as poplar, in commercial quantities.

Skeptics regard this as unlikely to become a carbon-neutral commercial process due to the energy inputs required to maintain the system. For decades, researchers have sought to house termites on a commercial scale (like worm farms) to break down woody debris and paper, but funding has been scarce and the problems of developing a continuous process that does not disrupt the termites' homeostasis have not been overcome.[10]
[edit] Ground water divining in Ancient India

Varaha Mihira (505 C.E- 587 C.E), the famous astronomer, mathematician and astrologer of India, in his treatise "Brihat Samhita", also spelled "Vrahat Sanhita", refers to Dakargala (Sanskrit word meaning 'science of underground water exploration'), wherein the role of termite knolls, as an indicator of underground water has been elaborately explained.[11]

In Verse.S.54.9 of the Samhita, it is stated that sweet ground water would be found near a termite mound located east of a Jambu tree (botanical names - Eugenia Jambus,Engenia Jambolana), at a specific distance and a specific depth of 15 ft to the south of the tree.[11]

The above verse has been justified with an explanation:

Without exception the water requirements of the insects are generally very high, and they need to protect themselves against fatal desiccation by living and working within the climatically sealed environment of their nest or within earth covered galleries. According to present level of research, the atmosphere within the nest has to be maintained practically saturation moisture level ( 99-100 % humidity). It is a matter of common observation that whenever a termite nest or runway, is damaged, the insects immediately rush to the breach and repairs it with wet soil brought up from within the nest. From an over-all consideration of the evidence it seems to be safe to conclude that, while normally the insects use every readily available source of water close to the ground surface, under condition of severe climatic stress, they can and they probably do descend to the water table, no matter how deep it may be. Hence, a well-developed, active, permanent colony of mound-building termites can be taken as an indication of underground springs in proximity[11].

Two examples mentioned in the referred publication are, a) termiteries seen in the Katanga province (Congo Kinshasa) right up to the hill slopes where springs emerge, b) in the dry jungle uplands of coastal zone of Karnataka state (old Mysore state) and c) in the Deccan Plateau area[11].

It is also asserted in the verse Vr.S.54.85 that among a group of termite mounds, a water vein is sure to be found below the taller of the mounds. Verse 52 mentions that in a desert region, if a group of five termite mounds are found, and if the middle one is in white colour, then water will be found within a depth of Fifty five Purushas (in Sanskrit one Purusha is equivalent to 7.5 ft) or 412.5 ft[11].

As a common observation of a combination of different symptoms, termite mounds are said to be found close to trees, and ancient Hindus exploited this knowledge in the exploration of underground springs.[11].
[edit] Ecology

Ecologically, termites are important in nutrient recycling, habitat creation, soil formation and quality and, particularly the winged reproductives, as food for countless predators. The role of termites in hollowing timbers and thus providing shelter and increased wood surface areas for other creatures is critical for the survival of a large number of timber-inhabiting species. Larger termite mounds play a role in providing a habitat for plants and animals, especially on plains in Africa that are seasonally inundated by a rainy season, providing a retreat above the water for smaller animals and birds, and a growing medium for woody shrubs with root systems that cannot withstand inundation for several weeks. In addition, scorpions, lizards, snakes, small mammals, and birds live in abandoned or weathered mounds, and aardvarks dig substantial caves and burrows in them, which then become homes for larger animals such as hyenas and mongooses.

As detrivores, termites clear away leaf and woody litter and so reduce the severity of the annual bush fires in African savannas, which are not as destructive as those in Australia and the USA.

Globally, termites are found roughly between 50 degrees North & South, with the greatest biomass in the tropics and the greatest diversity in tropical forests and Mediterranean shrublands. Termites are also considered to be a major source of atmospheric methane, one of the prime greenhouse gases. Termites have been common since at least the Cretaceous period. Termites also eat bone and other parts of carcasses, and their traces have been found on dinosaur bones from the middle Jurassic in China.[12]
[edit] Plant defences against termites

Many plants have developed effective defences against termites, and in most ecosystems, there is an observable balance between the growth of plants and the feeding of termites. Defence is typically achieved by secreting anti-feedant chemicals (such as oils, resins, and lignins) into the woody cell walls. This reduces the ability of termites to efficiently digest the cellulose. Many of the strongly termite-resistant tree species have heartwood timber that is extremely dense (such as Eucalyptus camaldulensis) due to accretion of these resins. Over the years there has been considerable research into these natural defensive chemicals with scientists seeking to add them to timbers from susceptible trees. A commercial product, "Blockaid", has been developed in Australia and uses a range of plant extracts to create a paint-on nontoxic termite barrier for buildings. In 2005, a group of Australian scientists "discovered" (announced) a treatment based on an extract of a species of Eremophila that repels termites.[13] Tests have shown that termites are strongly repelled by the toxic material to the extent that they will starve rather than consume cross treated samples. When kept close to the extract, they become disoriented and eventually die. Scientists hope to use this toxic compound commercially to prevent termite feeding.
[edit] Taxonomy, evolution and systematics
The famous Giant Northern Termite Mastotermes darwiniensis attests to the close relationship of termites and cockroaches.

Recent DNA evidence[14][15] has supported the hypothesis, originally based on morphology, that termites are most closely related to the wood-eating cockroaches (genus Cryptocercus), to which the singular and very primitive Mastotermes darwiniensis shows some telltale similarities. Most recently, this has led some authors to propose that termites be reclassified as a single family, Termitidae, within the order Blattaria, which contains cockroaches [16][17][18]. However, most researchers advocate the less drastic measure of retaining the termites as Isoptera but as a group subordinate to true roaches, preserving the internal classification of termites [19].
Termites and other insects in copal, i.e. hardened resin.
[edit] Evolutionary history

The oldest unambiguous termite fossils date to the early Cretaceous, although structures from the late Triassic have been interpreted as fossilized termite nests.[20] Given the diversity of Cretaceous termites, it is likely that they had their origin at least sometime in the Jurassic. Weesner believes that Mastotermitidae termites may go back to the Permian[21] and fossil wings have been discovered in the Permian of Kansas which have a close resemblance to wings of Mastotermes of the Mastotermitidae, which is the most primitive living termite. It is thought to be the descendant of Cryptocercus genus, the wood roach. This fossil is called Pycnoblattina. It folded its wings in a convex pattern between segments 1a and 2a. Mastotermes is the only living insect that does the same,[22]

It has long been accepted that termites are closely related to cockroaches and mantids, and they are classified in the same superorder (Dictyoptera), but new research has shed light on the details of termite evolution.[23] There is now strong evidence suggesting that termites are really highly modified, social, wood-eating cockroaches. A study conducted by scientists has found that endosymbiotic bacteria from termites and a genus of cockroaches, Cryptocercus, share the strongest phylogenetical similarities out of all other cockroaches. Both termites and Cryptocercus also share similar morphological and social features—most cockroaches do not show social characteristics, but Cryptocercus takes care of its young and exhibits other social behaviour. As mentioned above, the primitive Giant Northern Termite (Mastotermes darwiniensis) exhibits numerous cockroach-like characteristics that are not shared with other termites.

References

* Grimaldi, D. and Engel, M.S. (2005). Evolution of the Insects. Cambridge University Press. ISBN 0-521-82149-5.
* Engel, M.S. and K. Krishna (2004). "Family-group names for termites (Isoptera)". American Museum Novitates 3432: 1–9. doi:10.1206/0003-0082(2004)432<0001:FNFTI>2.0.CO;2.
* Earthlife
* Termite terms
* Cretaceous termites

1. ^ Piper, Ross (2007), Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals, Greenwood Press.
2. ^ C. Bordereau, A. Robert, V. Van Tuyen & A. Peppuy (1997). "Suicidal defensive behavior by frontal gland dehiscence in Globitermes sulphureus Haviland soldiers (Isoptera)". Insectes Sociaux 44 (3): 289–297. doi:10.1007/s000400050049.
3. ^ The evolution of fungus-growing termites and their mutualistic fungal symbionts by Duur K. Aanen, Paul Eggleton, Corinne Rouland-Lefèvre, Tobias Guldberg-Frøslev, Søren Rosendahl & Jacobus J. Boomsma
4. ^ Fungus-farming insects: Multiple origins and diverse evolutionary histories by Ulrich G. Mueller & Nicole Gerardo
5. ^ Professor Lobeck, A.K. 1939. Geomorphology: An introduction to the study of landscape. McGraw-Hill Book Company, New York.
6. ^ "Termite." Encyclopædia Britannica Online Library Edition. Retrieved 19 November 2007.
7. ^ Google Earth, at lat -14.6565° long 25.8337°. The smaller termite mounds are the light patches; the larger ones are clumps of bushes with lighter patches of bare earth. Retrieved 19 November 2007.
8. ^ JGI - Organization responsible for sequencing the termite.
9. ^ "Termite (Order: Isoptera) - Wiki". http://www.animalpicturesarchive.com/view.php?tid=3&did=28077. Retrieved 2009-05-09.
10. ^ Original article on termites as bioreactors
11. ^ a b c d e f Pages 58 to 60 of the publication titled "Hydrology in Ancient India",published by the National Institute of Hydrology, Roorkee, India, as India's contribution to International Hydrology Programme (IHP), published in September 1990
12. ^ 403 Forbidden
13. ^ Plant extract stops termites dead
14. ^ Lo, N. et al. Evidence for cocladogenesis between diverse dictyopteran lineages and their intracellular endosymbionts. Molecular Biology and Evolution, 20, 907–913 (2003)
15. ^ Ware,J.L. et al. Relationships among the major lineages of Dictyoptera: the effect of outgroup selection on dictyopteran tree topology. Systematic Entomology, 33, 429–450 (2008)
16. ^ Inward, D., G. Beccaloni, and P. Eggleton. 2007. Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biology Letters 3:331-335.
17. ^ "Termites are 'social cockroaches'". BBC News. 13 April 2007. http://news.bbc.co.uk/1/hi/sci/tech/6553219.stm.
18. ^ Eggleton, P. &al. (2007), Biological Letters, June 7, cited in Science News vol. 171, p. 318
19. ^ Lo, N. &al. (2007), Biology Letters, 14 August 2007, doi 10.1098/rsbl.2007.0264
20. ^ Gay and Calaby 1970 Termites of the Australian region. in; Krishna K Weesner FM eds. Biology of Termites, Vol. II Academic Press NY p401
21. ^ Weesner FM (1960) Evolution biology of termites. Annual Review of Entomology. 5; 153-170.
22. ^ Tilyard RJ (1937) Kansas Permian insects.. Part XX the cockroaches, or order BlattariaI, II Am. Journal of Science 34; 169-202, 249-276.
23. ^ Evidence for Cocladogenesis Between Diverse Dictyopteran Lineages and Their Intracellular Endosymbionts

Further reading

Sunday, October 10, 2010

ครั่งผลิตแชลค

ครั่ง มีชื่อทางวิทยาศาสตร์ว่า แลกซิเฟอร์ แลคคา ( Laccifer lacca Kerr ) ครั่งเป็นแมลงชนิดหนึ่งตัวสีแดง ขนาดเล็กมาก อาศัยอยู่บนต้นไม้ ทำรังเป็นยางแข็งหุ้มกิ่งไม้ไว้เพื่อป้องกันตนเองให้พ้นภัยจากศรัตรู

ตัวครั่งมีประโยชน์ ใช้ทำสีสำหรับย้อมผ้าไหม หรือย้อมหน้าฟอกสีได้ รังครั่งมีประโยชน์ ใช้ทำสิ่งของได้หลายอย่างใช้เคลือบผ้าพันสายไฟฟ้า หรือเคลือบเม็ดยาให้เป็นมัน หรือทำสีผสมอาหารก็ได้ นอกจากนั้นยังใช้ทำสิ่งของชนิดอื่นๆได้อีกมากมายหลายชนิด

ครั่ง เป็น แมลงเบียนของต้นไม้ จึงนับว่าเป็นศัตรูของไม้ที่อาศัย แมลงครั่งจะใช้ปากซึ่งเป็น งวงดูดน้ำเลี้ยง จากต้นไม้เพื่อใช้เลี้ยงชีวิต แล้วระบาย ยาง หรือ ชัน ชนิดหนึ่ง มีลักษณะนิ่มเหนียวสีเหลืองทองออกจากตัวมัน เมื่อถูกอากาศจะแข็งตัวกลายเป็นสีน้ำตาลเพื่อห่อหุ้มตัวป้องกันอันตรายจากสิ่งภายนอก เรียกสารตัวนี้ว่า ครั่ง

ครั่งตัวผู้ ลำตัวยาวรี ลำตัวสีแดง มี 2 ตา หนวด 2 เส้น มี 2 ชนิดคือ ตัวมีปีก กับ ไม่มีปีก ตัวมีปีกจะบินไปผสมกับครั่งบนกิ่งไม้ตัวอื่นได้ พวกไม่มีปีกจะคลานไปผสมกับครั่งตัวเมียที่เกาะกิ่งต้นเดียวกัน หลังผสมพันธุ์ตัวผู้ก็จะตาย ครั่งตัวเมีย ให้ลูกคราวละประมาณ 300 ตัว หลังฟักตัวอ่อน แม่ครั่งจะเหลือเพียงถุงเปล่าแล้วแห้งตายไป

ชิ้นส่วนของครั่งที่นำมาใช้ประโยชน์คือ.....สีครั่ง และ เนื้อครั่ง โดยใช้เป็นวัตถุดิบสำหรับอุตสาหกรรมหลายชนิด เช่น สีย้อมผ้า ทำครั่งแผ่น ทำฉนวนไฟฟ้า ฟอกยาง ใช้ทำแล็กเกอร์ สีทารถยนต์ สีทาเล็บ ขี้ครั่ง ยาขัดรองเท้าและน้ำมันขัดพื้น ใช้ในอุตสาหกรรมกระดาษ น้ำมัน เครื่องห่อวัตถุระเบิด ทำหมึกพิมพ์กันน้ำ เคลือบผิวผลไม้ ทำกาวแผ่น พรมน้ำมัน เครื่องเล่นของเด็ก เครื่องประดับต่างๆ ใช้ในการแพทย์ติดฟันปลอม เคลือบยาเม็ดเวชภัณฑ์ ฯลฯ

เนื่องจากครั่งมีประโยชน์ต่อมนุษย์อย่างมากมาย เช่น “ตัวครั่ง” ใช้ทำสีสำหรับย้อมผ้า ย้อมไหม หรือย้อมหนังสัตว์ “รังครั่ง” ยังมีประโยชน์ใช้ทำสิ่งของได้หลายอย่าง ใช้เคลือบผ้าพันสายไฟฟ้า หรือ เคลือบเม็ดยาให้มันและป้องกันความชื้น หรือ ใช้ทำสีผสมอาหาร นอกจากนี้ยังใช้เป็นส่วนประกอบในยาแผนโบราณเพื่อรักษาโรคบางชนิด ประโยชน์ที่สำคัญของครั่ง คือ ใช้ทำแชลแลคสำหรับทาไม้ให้เงาสวยงามทนทาน “ครั่ง” จึงยังเป็นที่ต้องการของหลายประเทศ แต่มีเพียงไม่กี่ประเทศเท่านั้นที่สามารถผลิตครั่งส่งออกได้ โดยประเทศไทย ถือเป็นประเทศที่ส่งออก “ครั่ง” ได้เป็นอันดับ 1 ใน 2 ของโลกรองจากประเทศอินเดีย

โดยส่วนที่นิยมนำมาใช้ประโยชน์ทางอุตสาหกรรม คือ สีจากครั่ง ที่ได้จากการสกัดน้ำล้างครั่ง นำไปใช้ทำสีย้อมผ้า ย้อมขนสัตว์ หรือใช้เป็นสีผสมอาหาร และเนื้อครั่ง หรือ ครั่งเม็ด ( Seed Lac) นำไปผลิตเป็น “แชลแลค” ถือเป็นพลาสติกจากธรรมชาติที่สุด ( Nature plastics ) แบ่งออกเป็น 3 ประเภท คือ แชลแลคธรรมดา แชลแลคขาวหรือ แชลแลคฟอกสี และแชลแลคปรุงแต่ง ปัจจุบันมีการนำเอาแชลแลคมาใช้ประโยชน์ทางอุตสาหกรรมต่างๆ มากขึ้น อาทิ อุตสาหกรรมยา อุตสาหกรรมกระดาษ อุตสาหกรรมหมึกพิมพ์ อุตสาหกรรมเกี่ยวกับวัสดุที่เป็นฉนวนไฟฟ้า และ อุตสาหกรรมยาง

นอกจากประโยชน์ดังกล่าว ยังมีการนำเอาแชคแลคมาใช้อย่างอื่นอีก เช่น ใช้เคลือบผิวผลไม้ ทำให้เหี่ยวช้าลงกว่าปกติ ใช้เคลือบลูกกวาด ยาเม็ด ใช้ในการผลิตน้ำยาล้างฟิล์มถ่ายรูป เป็นส่วนประกอบการในสารฆ่าเชื้อราสำหรับหนังสือ สารฆ่าแมลง หรือ ยาทาเล็บ เป็นต้น

เนื่องจากแชลแลคเป็นพลาสติกธรรมชาติ( Natural plastics )ที่มีคุณสมบัติทางเคมีเฉพาะ เช่น สี ความเปราะ และไม่คงตัวเมื่อถูก oxidized ได้ง่าย ดังนั้น การใช้ประโยชน์จากแชลแลคจึงต้องมีการพัฒนาคุณภาพของสารเคลือบที่ใช้วัตถุดิบ ที่มาจากแชลแลค และการพัฒนาเทคโนโลยีในการเคลือบโดยใช้แชลแลค จึงจะสามารถใช้ประโยชน์จากแชลแลคได้อย่างมีประสิทธิภาพ ฉะนั้นการพัฒนาคุณภาพแชลแลคจึงต้องสามารถแก้ปัญหาคุณสมบัติทางกายภาพและเคมี ของแชลแลคในการแปรรูปจากแชลแลคขาวเกรดที่ใช้กับอาหารและยา เป็นสารหรือน้ำยาสำหรับเคลือบหรือแว็กซ์ผลไม้นั้นต้องมี know how เฉพาะ จึงอาศัยจากผู้เชียวชาญที่ทางโครงการ iTAP จัดหาเข้ามาทำวิจัยและพัฒนาผลิตภัณฑ์แชลแลคขาวของบริษัท เพื่อต่อยอดเป็นสารเคลือบเม็ดยาและอาหารประเภทคอนเฟคชั่นนารี่ หรือ ลูกกวาด

ข้อดีของการ Modified แชลแลคขาว จะทำให้มีอายุการใช้งานได้ยาวนานขึ้น และสะดวกในการเก็บรักษาโดยไม่จำเป็นต้องเก็บไว้ในห้องเย็น สามารถทนต่อสภาพอุณหภูมิปกติได้ ช่วยขจัดข้อจำกัดทางธรรมชาติของการใช้แชลแลคขาวจากเดิมที่ไม่สามารถทนต่อ อากาศร้อนได้จะเกิดการเกาะตัวติดกันเป็นก้อนทำให้ความนิยมลดลงและหันไปใช้ สารเคลือบสังเคราะห์ที่มีราคาสูงแทน อาทิ EUDRAGIT แต่แชลแลคนั้น ถือเป็นพลาสติกทางธรรมชาติที่ดีที่สุด และปลอดภัยที่สุด เพราะเป็นผลผลิตที่ได้จากแมลงครั่ง

Laminate

A laminate is a material that can be constructed by uniting two or more layers of material together. The process of creating a laminate is lamination, which in common parlance refers to the placing of something between layers of plastic and glueing them with heat and/or pressure, usually with an adhesive. However, in electrical engineering, lamination is a construction technique used to reduce unwanted heating effects due to eddy currents in components, such as the magnetic cores of transformers.

Materials

The materials used in laminates can be the same or different. An example of the type of laminate using different materials would be the application of a layer of plastic film — the "laminate" — on either side of a sheet of glass — the laminated subject. Vehicle windshields are commonly made by laminating a tough plastic film between two layers of glass. Plywood is a common example of a laminate using the same material in each layer. Glued and laminated dimensioned timber is used in the construction industry to make wooden beams, Glulam, with sizes larger and stronger than can be obtained from single pieces of wood. Another reason to laminate wooden strips into beams is quality control, as with this method each and every strip can be inspected before it becomes part of a highly stressed component such as an aircraft undercarriage.

Examples of laminate materials include Formica and plywood. Formica and similar plastic laminates (such as Pionite, Wilsonart, Lamin-Art or Centuryply Mica) are often referred to as High Pressure Decorative Laminate (HPDL) as they are created with heat and pressure of more than 5 psi (34 kPa). A new type of HPDL is produced using real wood veneer or multilaminar veneer as top surface. Alpikord produced by Alpi spa and Veneer-Art, produced by Lamin-Art are examples of these types of laminate.

Laminating paper, such as photographs, can prevent it from becoming creased, sun damaged, wrinkled, stained, smudged, abraded and/or marked by grease, fingerprints and environmental concerns. Photo identification cards and credit cards are almost always laminated with plastic film. Boxes and other containers are also laminated using a UV coating. Lamination is also used in sculpture using wood or resin. An example of an artist who used lamination in his work is the American, Floyd Shaman.

Further, laminates can be used to add properties to a surface, usually printed paper, that would not have them otherwise. Sheets of vinyl impregnated with ferro-magnetic material can allow portable printed images to bond to magnets, such as for a custom bulletin board or a visual presentation. Specially surfaced plastic sheets can be laminated over a printed image to allow them to be safely written upon, such as with dry erase markers or chalk. Multiple translucent printed images may be laminated in layers to achieve certain visual effects or to hold holographic images. Many printing businesses that do commercial lamination keep a variety of laminates on hand, as the process for bonding many types is generally similar when working with arbitrarily thin material.
[edit] Types of laminators

Three types of laminators are used most often in digital imaging:

* Pouch laminators
* Heated roll laminators
* Cold roll laminators

[edit] Film types

Laminate film is generally categorized into these five categories:

* Standard thermal laminating films
* Low-temperature thermal laminating films
* Heatset (or heat-assisted) laminating films
* Pressure-sensitive films
* Liquid laminate

Wood Veneers

In woodworking, veneer refers to thin slices of wood, usually thinner than 3 mm (1/8 inch), that are typically glued onto core panels (typically, wood, particle board or medium-density fiberboard) to produce flat panels such as doors, tops and panels for cabinets, parquet floors and parts of furniture. They are also used in marquetry. Plywood consists of three or more layers of veneer, each glued with its grain at right angles to adjacent layers for strength. Veneer beading is a thin layer of decorative edging placed around objects, such as jewelry boxes.it is also a type of manufactured board.

Veneer is obtained either by "peeling" the trunk of a tree or by slicing large rectangular blocks of wood known as flitches. The appearance of the grain and figure in wood comes from slicing through the growth rings of a tree and depends upon the angle at which the wood is sliced. There are three main types of veneer-making equipment used commercially:

* A rotary lathe in which the wood is turned against a very sharp blade and peeled off in one continuous or semi-continuous roll. Rotary-cut veneer is mainly used for plywood, as the appearance is not desirable because the veneer is cut concentric to the growth rings.
* A slicing machine in which the flitch or piece of log is raised and lowered against the blade and slices of the log are made. This yields veneer which looks like sawn pieces of wood, cut across the growth rings.
* A half-round lathe in which the log or piece of log can be turned and moved in such a way to expose the most interesting parts of the grain.

Each slicing processes gives a very distinctive type of grain, depending upon the tree species. In any of the veneer slicing methods, when the veneer is sliced, a distortion of the grain occurs. As it hits the wood, the knife blade creates a "loose" side where the cells have been opened up by the blade, and a "tight" side.

Traditionally, veneers were also sawn, but this is more wasteful of wood. Veneering is an ancient art, dating back to the ancient Egyptians who used veneers on their furniture and sarcophagi.

Producing wood veneers

The finest and rarest logs are sent to companies that produce veneer. The advantage to this practice is two fold. First, it provides the most financial gain to the owner of the log. Secondly, and of more importance to the woodworker, is this practice greatly expands the amount of usable wood. While a log used for solid lumber is cut into thick pieces, usually no less than 1 1/8 inches, veneers are cut as thin as 1/40 of an inch. Depending on the cutting process used by the veneer manufacture, very little wood is wasted by the saw blade thickness, known as the saw kerf. Therefore, the yield of a rare grain pattern or wood type is greatly increased, which in turn places less stress on the resource. Some manufacturers even use a very wide knife to basically "slice off" the thin veneer pieces. In this way, none of the wood is wasted. The slices of veneer are always kept in the order in which they are cut from the tree, and are known as flitches.

Types of veneers

There are a few types of veneers available and each serves a purpose.

* A: Raw veneer has no backing on it and can be used with either side facing up. It is important to note that the two sides will appear different when a finish has been applied, due to the cell structure of the wood.
* B: Paper Backed veneer is as the name suggests, veneers that are backed with a paper. The advantage to this is it is available in large sizes, or sheets, as smaller pieces are joined together prior to adding the backing. This is helpful for users that do not wish to join smaller pieces of raw veneers together. This is also helpful when veneering curves and columns as the veneer is less likely to crack.
* C: Phenolic Backed veneer is less common and is used for composite, or man made wood veneers. Due to concern for the natural resource, this is becoming more popular. It too has the advantage of being available in sheets, and is also less likely to crack when being used on curves.
* D: Laid Up veneer is raw veneer, which has been joined together to make larger pieces. The process is time consuming and requires great care, but is not difficult, and requires no expensive tools or machinery. Veneers can be ordered through some companies already laid up to any size, shape or design.

Patterns

There are a number of "patterns" common to veneered work. This refers to the way the veneers are laid up.

* A: Book Matched: where the veneers are opened from the flitch much like the pages of a book.
* B: Slip Matched: where the pieces are joined together in the order they come from the flitch, and have the same face kept up.
* C: Radial Matched: where the veneer is cut into wedge shaped pieces and joined together.
* D: Diamond Matched: where the pattern formed is diamond shaped.


Advantages of using veneers

Furniture made with wood veneer uses somewhat less wood than the same piece of furniture made with solid wood. Some projects built using wood veneer would not be possible to construct using solid lumber, due to expansion and contraction caused by fluctuation of temperature and humidity.


Buying veneers

Wood veneers are typically sold by the square foot. With the ability to join veneers, even small pieces are usable, resulting in very little waste. Many sources sell small packets of veneers which are sequence matched, and are perfect for small projects. These make experimenting and practicing much more economical. It is also possible to buy plywood and other substrates with veneered faces for larger projects consisting of casework.

Plywood

Plywood

is a type of manufactured wood made from thin sheets of wood. The layers are glued together so that adjacent plies have their wood grain at right angles to each other for greater strength. There are usually an odd number of plies, as symmetry makes the board less prone to warping.
Tropical plywood




Tropical plywood is always made of Meranti or mixed species of tropical wood in the Asian region. Tropical plywood boasts its superiority over softwood plywood due to its density, strength, evenness of layers, and high quality. It is usually sold at a premium in many markets if manufactured with high standards. Tropical plywood is widely used in UK, Japan, Taiwan, Korea, Dubai, and other major cities worldwide. It is the most preferred choice for construction purposes in many regions.
[edit] Softwood plywood

Softwood

anel is usually made either of Douglas fir or spruce, pine, and fir (collectively known as spruce-pine-fir or SPF), and is typically used for construction and industrial purposes.[1]
[edit] Manufacture



Plywood is one of the most widely used wood products. It is flammable, flexible, cheap, workable, recyclable, and can usually be locally manufactured. Plywood is made from thin layers of wood that are peeled from trees. These layers (or the veneer) are then glued together to make plywood. The grain direction in each layer of veneer is perpendicular to the next layer. There are always odd number of layers so that the sheet is balanced - this prevents warping. Because of the way plywood is bonded (with grains running against one another and with an odd number of composite parts) it is very hard to bend it perpendicular to the grain direction. A common reason for using plywood instead of plain wood is its resistance to cracking, shrinkage, twisting/warping, and its general high degree of strength.
[edit] Hardwood plywood

Used for soft demanding end uses. Birch plywood is characterised by its excellent strength, stiffness and resistance to creep. It has a high planar shear strength and impact resistance, which make it especially suitable for heavy-duty floor and wall structures. Oriented plywood construction has a high wheel-carrying capacity. Birch plywood has excellent surface hardness, and damage- and wear-resistance. [2]
[edit] Decorative plywood

Usually faced with hardwood, including red oak, birch, maple, lauan (Philippine mahogany) and a large number of other hardwoods.

Plywood for indoor use generally uses the less expensive urea-formaldehyde glue which has limited water resistance, while outdoor and marine-grade plywood are designed to withstand rot, and use a water resistant phenol-formaldehyde glue to prevent delamination and to retain strength in high humidity.

The most common varieties of softwood plywood come in three, five or seven plies with a metric dimension of 1.2 m × 2.4 m or the slightly larger imperial dimension of 4 feet × 8 feet. Plies vary in thickness from 1/10" through 1/6" depending on the panel thickness. Roofing can use the thinner 5/8-inch plywood. Subfloors are at least 3/4-inch thick, the thickness depending on the distance between floor joists. Plywood for flooring applications is often tongue and grooved. The mating edge will have a "groove" notched into it to fit with the adjacent "tongue" that protrudes from the next board. This prevents one board from moving up or down relative to its neighbour, so providing a solid feeling floor when the joints do not lie over joists. Tongue & groove flooring plywood is typically 1" in thickness.
[edit] Special purpose plywood

High-strength plywood, known as aircraft plywood, is made from mahogany and/or birch, and uses adhesives with increased resistance to heat and humidity. It was used for several World War II fighter aircraft, including the British-built Mosquito bomber which was nicknamed the wooden wonder.

Certain plywood

s do not have alternating plies. These are designed for a specific purpose. One such plywood is known as "Bendy Board", ( only in Ohio)Normally called Flexible Plywood. This is very flexible and is designed for making curved parts. In the UK this is known as "Hatters Ply" as it was used to make gents stovepipe hats in Victorian times. However these may not be termed plywood in some countries because the basic description of plywood is layers of veneered wood laid on top of each other with the grain of each layer perpendicular to the grain of the next.


Marine plywood

is NOT specially treated to resist rotting in a high-moisture environment. Its construction is such that it can be used in environments where exposed to moisture for long periods. Each wood veneer will have negligible core gap, limiting the chance of trapping water in the plywood and hence providing a solid and stable glue bond. It uses an exterior WBP glue similar to most exterior plywoods. Marine plywood is frequently used in the construction of docks and boats. It is much more expensive than standard plywood: the cost for a typical 4-foot by 8-foot 1/2-inch thick board is roughly $75 to $100 US or around $2.5 per square foot, which is about three times as expensive as standard plywood.



Marine plywood can be graded as being compliant with BS 1088, which is a British Standard for marine plywood. There are few international standards for grading marine plywood and most of the standards are voluntary. Some marine plywood has a Lloyd's of London stamp that certifies it to be BS 1088 compliant. Some plywood is also labeled based on the wood used to manufacture it. Examples of this are Okoume or Meranti

Other types of plywoods include fire-retardant, moisture-resistant, sign-grade, pressure-treated, and of course the hardwood and softwood plywoods. Each of these products is designed to fill a need in industry.
[edit] Sizes

US: 4 ft by 8 ft
US: 5 ft by 5 ft
Metric: 1220mm by 2440mm [3]
[edit] Production

Plywood production requires a good log, called a peeler, which is generally straighter and larger in diameter than one required for processing into dimensioned lumber by a sawmill. The log is laid horizontally and rotated about its long axis while a long blade is pressed into it (rather like turning a Swiss Roll against the edge of a ruler), causing a thin layer of wood to peel off. In this way the log is peeled into sheets of veneer which are then cut to the desired dimensions, dried, patched, glued together and then baked in a press at 140 °C (280 °F) and 19 MPa (2800 psi) to form the plywood panel. The panel can then be patched, resized, sanded or otherwise refinished, depending on the market for which it is intended.

The adhesives used in plywood have become a point of concern. Both urea formaldehyde and phenol formaldehyde are carcinogenic in very high concentrations. As a result, many manufacturers are turning to low formaldehyde-emitting glue systems, denoted by an "E" rating ("E0" possessing the lowest formaldehyde emissions). Plywood produced to "E0" has effectively zero formaldehyde emissions[4].

In addition to the glues being brought to the forefront, the wood resources themselves are becoming the focus of manufacturers, due in part to energy conservation, as well as concern for our natural resources. There are several certifications available to manufacturers who participate in these programs. Forest Stewardship Council (FSC), Leadership in Energy and Environmental Design (LEED), Sustainable Forestry Initiative (SFI), and Greenguard are all certification programs that ensure that production and construction practices are sustainable. Many of these programs offer tax benefits to both the manufacturer and the end user.[5]
[edit] US plywood grades

Plywood grades are determined by a veneer quality on the face and back of each panel. The first letter designates quality of face veneer (best side), while the second letter denotes the surface quality of the back of the panel.[6] The letter "X" indicates the panel was manufactured with scrap wood as the center plies, not "exterior" as is commonly thought[citation needed]. The A-D rating is only used for construction (softwood) plywood, not for hardwood plywoods such as oak or maple.

"A": Highest grade quality available. Can be defect free or contain small knots, providing they are replaced with wooden plugs (the fillers having a "boat" or an "American football" shape) or repaired with synthetic patch. This grade may contain occasional surface splits that are repaired with synthetic filler. The surface is always sanded and provides for smooth paintable face quality.

"B": Second highest quality veneer grade. Normally a by-product of downgraded "A" quality veneer. Solid surface, but may contain small diameter knots and narrow surface splits. Normally repaired with wooden plugs or synthetic filler. The surface is normally sanded smooth.

"C": Considered to be a lower end face quality, but a reasonable choice for general construction purposes. May contain tight knots up to 1½ inches diameter, some open knot holes, some face splits, and discoloration. Some manufactures may repair the defects with synthetic filler. Panels are typically not sanded.

"D": Considered to be the lowest quality veneer and often used for the back surface for construction grade panels. Allows for several knots, large and small, as well as open knots up to 2½ inches diameter. Open knots, splits, and discoloration are acceptable. "D" grade veneers are neither repaired nor sanded. This grade is not recommended for permanent exposure to weather elements.
[edit] Applications

Plywood is used in many applications that need high-quality, high-strength sheet material. Quality in this context means resistance to cracking, breaking, shrinkage, twisting and warping.

Exterior glued plywood is suitable for outdoor use, but because moisture affects the strength of wood, optimal performance is achieved in end uses where the wood's moisture content remains relatively low. On the other hand, subzero conditions don't affect plywood's dimensional or strength properties, which makes some special applications possible.

Plywood is also used as an engineering material for stressed-skin applications. It has been used for marine and aviation applications since WWII. Most notable is the British De Havilland Mosquito bomber, which was primarily made out of wood. Plywood is currently successfully used in stressed-skin applications.[citation needed]. The American designers Charles and Ray Eames are famous for their plywood-based furniture, while Phil Bolger is famous for designing a wide range of boats built primarily of plywood.
[edit] Softwood plywood applications

Typical end uses of spruce plywood are:

* Floors, walls and roofs in house constructions
* Wind bracing panels
* Vehicle internal body work
* Packages and boxes
* Hoarding
* Fencing

There are coating solutions available that mask the prominent grain structure of spruce plywood. For these coated plywoods there are some end uses where reasonable strength is needed but the lightness of spruce is a benefit e.g.:

* Concrete shuttering panels
* Ready-to-paint surfaces for constructions

[edit] Birch plywood applications

Coated special birch plywood is typically used as a ready-to-install component e.g.:

* Panels in concrete formwork systems
* Floors, walls and roofs in transport vehicles
* Container floors,
* Floors subjected to heavy wear in various buildings and factories,
* Scaffolding materials

Birch plywood is used as a structural material in special applications e.g.:

* Wind turbine blades
* Insulation boxes for Liquefied Natural Gas (LNG) carriers

Smooth surface and accurate thickness combined with the durability of the material makes birch plywood a favourable material for many special end uses e.g.:

* Die-cutting boards
* Supporting structure for parquet
* Playground equipment
* Furniture
* Signs and fences for demanding outdoor advertising
* Musical instruments
* Sports equipment

[edit] Tropical plywood applications

* Common plywood
* Concrete panel
* Floor base
* Structure panel
* Container flooring
* Lamin board
* Laminated Veneer Lumber (LVL)

Tropical plywood is widely available from the South-East Asia region, mainly from Malaysia and Indonesia. Tropical plywood boasts premium quality, and strength. Depending on machinery, tropical plywood can be made with high accuracy in thickness, and is a highly preferable choice in America, Japan, Middle East, Korea, and other regions around the world.